

A Model to Enhance the Performance of Distributed File

System for Cloud Computing

Pradheep Manisekaran* and Ashwin Dhivakar M R**
*Assistant professor, Department of Computer Science and Engineering, NIMS University, Jaipur, India

Email: pradheep45@hotmail.com
**Research Scholar Jaipur National University Jaipur

Email: ashdhiv@gmail.com

Abstract: Cloud computing is a new era of computer technology. Clouds have no borders and the data can be physically
located anywhere in any data center across the network geographically distributed. Large scale distributed systems such as
cloud computing applications are getting very general. These applications come with increasing challenges on how to transfer
and where to store and compute data. The most current distributed file systems to deal with these challenges are the Hadoop
file system (HDFS) and Google file system (GFS). But HDFS has some issues. The most factors are that it depends on one
name node to handle the majority operations of every data block in the file system. As a result, it may be a bottleneck
resource and one purpose of failure. The second potential problem with HDFS is that it depends on TCP to transfer data.
Usually, TCP takes several rounds before it will send at the complete capability of the links in the cloud. This results in low
link utilization and longer downloads times. In such file systems, nodes simultaneously serve computing and storage
functions; a file is divided into a number of chunks allocated to distinct nodes so MapReduce tasks may be performed in
parallel over the nodes. However, in a cloud computing, the crash is the commonplace, and nodes could also be upgraded,
replaced, and added to the system. Files can even be dynamically created, deleted, and appended. This results in load
imbalance in a distributed file system; that's, the file chunks aren't distributed as uniformly as potential among the nodes.
Growing distributed file systems in production systems powerfully depend upon a central node for chunk reallocation. This
confidence is clearly inadequate in a large-scale, failure-prone setting as a result of the central load balancer is put out vital
workload that's linearly scaled with the system size therefore, it become the performance bottleneck a single purpose of
failure. Suppose we tend to save the files in cloud information and a few third party accesses those files and adds some
extraneous information which will damage our system. thus to boost the performance and security of cloud computing in this
thesis we use a new approach called load balancing with round robin algorithm.

Keywords: Cloud computing, File system, Distributed System, Storage System, Load balancing.

Introduction
Cloud computing is a compelling technology .in cloud users can dynamically store and access their resources without
sophisticated deployment and management of resources by means of internet. Cloud computing is emerging as a new
paradigm of large-scale distributed computing.it has moved computing and users data away from desktop, portable devices
into large data centers.it has the capability to utilize the power of internet and wide area network to access the resources that
are available remotely (e.g. software, storage, data, network).cloud computing has two broad categories such as cloud and
cloud technologies. The term “cloud” refers to a collection of infrastructure services such as software as a service,
infrastructure as a service, and platform as a service. The term “cloud Technologies” refers to various cloud runtimes such as
MapReduce framework [1], Hadoop Distributed File System (HDFS), Google File System (GFS), etc.
Cloud computing involves distributed technologies to satisfy a number of users and applications by providing functionalities
like resource sharing, software, hardware, information through internet.in order to reduce the capital and operational cost, and
to increase the performance in terms of response time and data processing time, maintain the system stability. Day by day the
number of users, amount of data, structure of the network is increasing rapidly so that there are lot of technical challenges
involves in this process such as virtual machine migration, data transfer, bottleneck performance, unpredictability, server
consolidation, fault tolerance, scalable storage, high availability and major issue is the load balancing. Dealing with these
challenges of large scale distributed data computer and storage intensive applications such as search engines, cloud storage
applications, and social networks require robust scalable efficient algorithms and protocols.
The google File System (GFS) which is used by google and Hadoop Distributed File System (HDFS) is a most common
algorithm deployed in Facebook and yahoo today. Distributed file system are key building blocks for cloud computing
application. Based on the MapReduce framework in such file systems nodes simultaneously serve computing and storage
functions; a file is partitioned into a number of chunks allocated to distinct nodes so that MapReduce task can be performed

A Model to Enhance the Performance of Distributed File System for Cloud Computing 37

in parallel over the nodes. And these file chunks are assigned to different cloud storage node known as chunk server.in such a
distributed file system the load of a node is typically proportional to the number of file chunks the node possesses [4].because
the files in a cloud computing can be haphazardly created, deleted, and appended in the file system[6], And nodes can be
upgraded, replace and added in the file system .the file chunks cannot be distributed uniformly as possible among the
nodes.in this case load, balance among storage nodes is a critical function in clouds.
However, GFS and HDFS has some potential problem. The first one is HDFS depends on a single name node to manage
almost all operations of every data block in the file system. As a result, in can be a bottleneck resource and a single point of
failures and once it fails to perform the action it takes a long time to recover. And the second one is it totally depends on TCP
to transfer data. Usually, TCP takes several rounds to transfer data in cloud this results in low link utilization and longer
download time
In this paper, we studies and address these problems with current system such as GFS and HDFS .in order to increase the
system scalability we using a light weight end server to connect and share all requests with many name nodes. This makes a
single name node to many name nodes. And it is stateless. If it goes down no data will be lost and we can bring it up instantly
and another main feature of our system is that it uses an efficient load balancing algorithm to balance and split the load
between the name node servers. Our proposed model can achieve full link utilization and also decreases download time. As a
result, of this, there won’t be any bottleneck failure and we can achieve lower chunk transfer times
The contribution of this paper involves:

 We propose a vertically distributed framework that defines bindings between client system and the name node
servers

 We propose an approach to schedule jobs with CPU and resource requirements in shared heterogeneous cloud
computing

The proposed policy is demand driven and it improves overall resource utilization. The proposed scheduling policy is studied
under various system and workload parameters

Background

Cloud technologies
The cloud technologies such as MapReduce and Dryad, Google File System, Hadoop Distributed File System, Microsoft
Dryad and CGL-MapReduce have created new trends [26]. Distributed file systems such as GFS and HDFS are used to
access data through distributed storage system built on heterogeneous compute nodes and the Dryad and CGL-MapReduce
used to read data from local disks

Cloud computing services
Cloud computing offers three major services such as Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and
Software as a Service (SaaS) [8].

Fig 1: Cloud computing services

IaaS provides computing resources such as storage, servers, other low-level networks, and hardware resource virtually over
the internet based on the demand, for example, GoGrid, Amazon’s EC2 serving infrastructure to the IT industries [26]

SaaS (Saleforce.com, etc.)

IaaS (Amazon EC2, S3, etc.)

PaaS (Google App,
Hadoop,

CloudStore, etc.)

Table

Compute

Storage

38 Seventh International Conference on Recent Trends in Information, Telecommunication and Computing – ITC 2016

PaaS provides application framework and a set of application programming interface that can be used for developing
purposed as well as for developing applications for the cloud. The Google and Microsoft are the major companies which
providing PaaS
SaaS provides fully executable software delivered over the internet. Through the internet, the users can operate and make
utilize the functionality of the product

Existing Load Balancing Algorithms

Equally Spread Current Execution Algorithm(ESCE)
Here the load will be given equally to all the virtual machine connected to the data center. If any request coming from
client/node .the load balancer scans the index table which contains information about the virtual machines as well as a
number of jobs currently assigned to the virtual machine. If the request comes from the data center to allocate the VM [13]. It
scans the index for least loader VM. The first identified VM is selected for handling the request from the client.After
completing the assigned task, the load balancer will update the index table by decreasing the allocation count for identified
VM. Here scanning process of index table again and again is a major issue

Round Robin Algorithm
This is very simple and lightweight algorithm that works on the concept of time quantum here time is divided into multiple
slices and each node is given a particular time quantum.in this time quantum, the node has to perform all the operations
allocated to it.in Round Robin scheduling algorithm time quantum play a very major role for scheduling the resources to the
client. The time quantum should not be extremely smaller or extremely bigger than the RR scheduling algorithm.it is very
light weight and simple algorithm but there is an additional load on the scheduler to decide the size of quantum

Throttled Load Balancing Algorithm(TLB)
In this algorithm, the load balancer maintains an index table same like ESC algorithm which contains a list of virtual
machines as well as their states. The client will first pass a request to the data center to find a suitable virtual machine and
then data center will query the load balancer for allocation of VM. The load balancer scans the index table from the top until
finding the suitable VM and job will be allocated for that VM. If the VM is not found the load balancer will return -1 to the
data center. After completion of the job the details will be updated in index table to free the VM and make it ready for next
job allocation.Here also the scanning process for VM will makes lot of delays.

Proposed Work

Architecture

Fig 2: vertically distributed framework

A Model to Enhance the Performance of Distributed File System for Cloud Computing 39

Load Balancing Algorithm
In our proposed work we using two sharing approaches such as Time sharing and space sharing. Time sharing approach helps
to balance the load in a number of jobs on process node servers and also helps to allocate that job to nodes can execute
according to its time quantum which results in getting less weight time for the jobs. We use the parameter multiprogramming
level (MPL) to control the number of tasks among which the processor is time shared at given time. Since each and every
processors have different processing speed, the MPL [14] is determined as follows

ܮܲܯ =
݀݁݁݌ݏ	ܷܲܥ ∗ ܮܲܯ	ܿ݅ݏܽܤ
 ݀݁݁݌ݏ	ݎ݋ݏݏ݁ܿ݋ݎ݌	ݐݏ݁ݓ݋݈ݏ

 The space sharing technique also allows splitting the job on different processing nodes if one node is not able to full the
requirements of the job then the job will be split into the different processing nodes which make the job to be executed in less
time. The proposed system also uses the demand driven approach it makes the system more efficient. In the demand-driven
approach if the node is in the idle state then it will demand their parent for the jobs and if the parent does not have the job
then it will demand the job from its parent. it will make the system wait less for the jobs. In the workload model, all tasks of
jobs have equal service demand. Job cumulative service demand is dividing into maximum jobs and each job will have a
demand for minimum time. This workload shows the advantage of space sharing policy. The adaptive scheduling used for
Heterogeneous Multi-cluster System can be framed using following steps:

I. Job selection: Job selection policy is used to select the jobs in the queue. The global scheduler consists the jobs in
the queue. The aim of scheduling policy is to carry the job from the queue in some manner. So we use First Come
First Serve policy. It is one of the simple policies and it has less overhead as compared to other policies. It
implements just one queue which holds the tasks in the order they come in. The job is served in arrival order.it is
done by our lightweight front end server. In case if it crashed also we won’t face any data loss and it recovered
instantly

II. Selecting site: The Site/Cluster is selected on the basis of where can our job perfectly runs. The Most-fit policy is
used to select the cluster. The perfect policy is used to minimize the data that is divided into fragments by choosing
the appropriate cluster which wasteless number of processing nodes and by taking care of the other jobs in the
queue.

o In our scenario, we define the tree structure in which the main front end server divided into three resource
schedulers. After this three resource schedulers it further divided into three nodes each, our system contains
total 9 name nodes. Each node connected to 8 chunk servers.

o All the nodes find their BPU request according to the total sum of their BPUs range. In this system, all the
processing nodes perform the task which is divide equally to them.

o Multiprogramming Level (MPL) of all the node is also fixed. We have formula to calculate MPL of each
processor. MPL= (Processor speed ×Basic MPL)/ (slowest processor speed). Or we can make it fixed
(preferred) to simplify it. We can fix it to 2 i.e. each processing nodes can do time-sharing between two
jobs. For time-sharing we use Round Robin algorithm.

o Round Robin algorithm is used to find the waiting time and remaining time to finish the task of all nodes to
allocate the jobs equally to them.

And after all scheduling and allocation of chunks the details will be stored by resource scheduler in their index table by
means of the parameters such as BPU, starting time, ending time, node id .at each and every iterations this file table will be
updated.

Numerical Result
Every processing node in a cluster consists of different number of BPUs (Intra cluster heterogeneity). Number of BPUs for
each processor it is fixed to find the performance of our model. For example N33 = 1 BPU, N34 = 4 BPUs, N35 = 2 BPUs,
N36 = 12 BPUs, N37 = 2 BPUs, N38 = 3 BPUs, N39 = 10 BPUs, N40 = 7 BPUs. In starting System will be in neutral state.
There won’t be any jobs in intermediate layers or any other processors. Jobs travel down in hierarchy order based on the
demand from the client systems Multiprogramming Level (MPL) of all the processor is also fixed. We have formula to
calculate MPL of each processor. Or we can make it fixed (preferred) to simplify it. We fixed it as 2 i.e. each processing
nodes can do time-sharing between two jobs. And we got the result as follows:

40 Seventh International Conference on Recent Trends in Information, Telecommunication and Computing – ITC 2016

Fig 3: performance of the system graphically

Representing the values in the form of table as follows:

Table 1: Comparison of waiting times between our and existing system

Conclusion
In this dissertation work, a new scalable and efficient scheduling algorithm in distributed file system is planned and then
enforced in virtual cloud computing environment using Microsoft visual studio, in c# language. Our proposal is to balance
the loads of nodes, to increase the processing speed in file system and also to reduce the cost as much as possible. This thesis
presents design of a scalable and efficient distributed file system. The system uses a light weight front and back end server to

00:00.015

00:01.743

00:03.471

00:05.199

00:06.927

00:08.655

00:10.383

00
:0

0.
00

0
00

:0
0.

80
0

00
:0

1.
60

0
00

:0
2.

40
0

00
:0

3.
20

0
00

:0
4.

00
0

00
:0

4.
80

0
00

:0
5.

60
0

00
:0

6.
40

0
00

:0
7.

20
0

00
:0

8.
00

0
00

:0
8.

80
0

00
:0

9.
60

0

resources

Waiting

A Model to Enhance the Performance of Distributed File System for Cloud Computing 41

manage sessions and compute the storage and processing of data. This design solves the potential bottleneck scenario that the
name node server of current systems by can be allocation the work load into further host. Our research work conjointly offers
an adaptive and efficient resource allocation scheme which may lead to full link utilization and hence much reduced chunk
transfer time. By visualizing the parameters in graphs and tables we can able to simply identify that the response time and
data centre processing time is improved yet as well as cost is reduced in comparison to the existing scheduling parameters.
Based on the numerical results presented, our algorithm will overcome standard existing distributed file systems .our model
can be directly implemented in current distributed file systems.

Reference
[1] Dean, J.and S.Ghemawat. 2008.” MapReduce:simplified data processing on large clusters.Commun.ACM 51(1):107-113”.
[2] ASF.2009.Apache Hadoop Core. http://hadoop.apache.org/core
[3] Ali M. Alakeel, (2010),”A Guide to Dynamic Load Balancing in Distributed Computer Systems”,International Journal of Computer

Science and Network Security, VOL.10 No.6, June 2010.
[4] Hadoop Distributed File System, http://hadoop.apache.org/hdfs/, 2012
[5] Debessay Fesehaye, Rahul Malik, Klara Nahrstedt, A Scalable Distributed File System for Cloud Computing.(n.d)[online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.176.5236&rep=rep1&type=pdf
[6] Hadoop Distributed File System “Rebalancing Blocks”, http://developer.yahoo.com/hadoopp/tutorial/module2.html#rebalancing,

2012
[7] Cloud computing principles, systems and applications NICK Antonopoulos (n.d.)[online].Available: http://mgitech.wordpress.com.
[8] C.Vecchiola, S.Pandey, and R.Buyya,”High-Performance Cloud Computing: A view of scientific

applications,”CoRR,Vol.abs/0910.1979,2009
[9] Mladen A. Vouk, Cloud Computing Issues, Research and Implementations, Proceedings of the ITI 2008 30th International Conference

on Information Technology Interfaces, 2008, June 23-26.
[10] lizhe wang, rajiv Ranjan. (n.d.). Cloud Computing Methodology, Systems and Applications. Available:http://www.unitiv.com.
[11] Luyang Dong, Bin Gong, (2012),”A Hierarchical Scheduling Policy for Large-Scale Rendering”,IEEE International Conference on

Systems, Man, and Cybernetics, 2012.
[12] Tejinder Sharma, Vijay Kumar Banga, (2013), “Efficient and Enhanced Algorithm in Cloud Computing”, International Journal of Soft

Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-3, Issue-1.
[13] Jasmin James, Dr. Bhupendra Verma,(2012),” Efficient VM Load Balancing Algorithm For A Cloud Computing Environment”,

Jasmin James et al. International Journal on Computer Science and Engineering (IJCSE),Vol-4,Issue No.9.
[14] J. H. Abawajy and S. P. Dandamudi, “Parallel job scheduling on multicluster computing systems,” in Proceedings of the IEEE

International Conference on Cluster Computing,Hong Kong, China, 2003, pp. 11-18.
[15] Jaliya Ekanayake and Geoffrey Fox, High Performance Parallel Computing with Clouds and Cloud Technologies, Presented at Cloud

Computing - First International Conference, CloudComp, Munich, Germany, 2009
[16] Jonthan Strickland. How Cloud Computing Works (n.d.) [online]. Available:http://www.howstuffworks.com/cloud-computing/cloud-

computing1.html
[17] Abhisek Pan, John Paul Walters, Vijay S. Pai, Dong-In D. Kang, Stephen P. Crago, “Integrating High Performance File Systems in a

Cloud Computing Environment“, The International Workshop on Data-Intensive Scalable Computing Systems (DISCS), in
conjunction with the 2012 ACM/IEEE Supercomputing Conference (SC’12), November 2012.

[18] Hung-Chang Hsiao, Member, Hsueh-Yi Chung, Haiying Shen,, and Yu-Chang Chao,(2013),” Load Rebalancing for Distributed File
Systems in Clouds”, IEEE Transactions On Parallel And Distributed Systems, Vol. 24, No. 5.

[19] Cong Wang, Qian Wang, and Kui Ren, Wenjing Lou, Privacy-Preserving Public Auditing for Data Storage Security in Cloud
Computing, Presented at IEEE INFOCOM 2010.

[20] Satoshi Togawa, Kazuhide Kanenishi, Private Cloud Cooperation Framework of e-Learning Environment for Disaster Recovery ,
IEEE International Conference on Systems, Man, and Cybernetics, 2013.

[21] Sonal Guleria1, Dr. Sonia Vatta2, (2013) “To Enhance Multimedia Security In Cloud Computing Environment Using Crossbreed
Algorithm”,International Journal of Application or Innovation in Engineering and Management, Volume 2, Issue 6.

[22] CemOzdogan,(2011, Feb.14). Round robin scheduling. [Online]. Available:
http://siber.cankaya.edu.tr/OperatingSystems/ceng328/node125.html.

[23] Amandeep Kaur Sidhu, Supriya Kinger, (2013),” Analysis of Load Balancing Techniques in Cloud Computing”, International Journal
of Computers & Technology,Volume 4 No. 2.

[24] Martin Randles, Enas Odat, David Lamb, Osama Abu- Rahmeh and A. Taleb-Bendiab, ”A Comparative Experiment in Distributed
Load Balancing”, 2009 Second International Conference on Developments in eSystems Engineering.

[25] Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. (2009, Feb. 10),” Above the clouds: A Berkeley view of cloud computing”,
EECS Dept., Univ. California, Berkeley, No. UCB/EECS-2009-28.

[26] Anthony T.Velte, Toby J.Velte, Robert Elsenpeter,”Cloud Computing A Practical Approach”, TATA McGRAW-HILL Edition 2010.

